13. Glossary
Glossary
Below is the summary of all the functions and methods that you learned in this lesson:
Category: Initialization and Utility
Function/Method | Description |
---|---|
pandas.read_csv(relative_path_to_file) |
Reads a comma-separated values (csv) file present at relative_path_to_file and loads it as a DataFrame |
pandas.DataFrame(data) |
Returns a 2-D heterogeneous tabular data. Note: There are other optional arguments as well that you can use to create a dataframe. |
pandas.Series(data, index) |
Returns 1-D ndarray with axis labels |
pandas.Series.shape pandas.DataFrame.shape |
Returns a tuple representing the dimensions |
pandas.Series.ndim pandas.DataFrame.ndim |
Returns the number of the dimensions (rank). It will return 1 in case of a Series |
pandas.Series.size pandas.DataFrame.size |
Returns the number of elements |
pandas.Series.values |
Returns the data available in the Series |
pandas.Series.index |
Returns the indexes available in the Series |
pandas.DataFrame.isnull() |
Returns a same sized object having True for NaN elements and False otherwise. |
pandas.DataFrame.count(axis) |
Returns the count of non-NaN values along the given axis. If axis=0, it will count down the dataframe, meaning column-wise count of non-NaN values. |
pandas.DataFrame.head([n]) |
Return the first n rows from the dataframe. By default, n=5. |
pandas.DataFrame.tail([n]) |
Return the last n rows from the dataframe. By default, n=5. Supports negative indexing as well. |
pandas.DataFrame.describe() |
Generate the descriptive statistics, such as, count, mean, std deviation, min, and max. |
pandas.DataFrame.min() |
Returns the minimum of the values along the given axis. |
pandas.DataFrame.max() |
Returns the maximum of the values along the given axis. |
pandas.DataFrame. mean() |
Returns the mean of the values along the given axis. |
pandas.DataFrame.corr() |
Compute pairwise correlation of columns, excluding NA/null values. |
pandas.DataFrame.rolling(windows) |
Provide rolling window calculation, such as pandas.DataFrame.rolling(15).mean() for rolling mean over window size of 15. |
pandas.DataFrame.loc[label] |
Access a group of rows and columns by label(s) |
pandas.DataFrame.groupby(mapping_function) |
Groups the dataframe using a given mapper function or or by a Series of columns. |
Category: Manipulation
Function/Method | Description |
---|---|
pandas.Series.drop(index) |
Drops the element positioned at the given index(es) |
pandas.DataFrame.drop(labels) |
Drop specified labels (entire columns or rows) from the dataframe. |
pandas.DataFrame.pop(item) |
Return the item and drop it from the frame. If not found, then raise a KeyError. |
pandas.DataFrame.insert(location, column, values) |
Insert column having given values into DataFrame at specified location. |
pandas.DataFrame.rename(dictionary-like) |
Rename label(s) (columns or row-indexes) as mentioned in the dictionary-like |
pandas.DataFrame.set_index(keys) |
Set the DataFrame's row-indexes using existing column-values. |
pandas.DataFrame.dropna(axis) |
Remove rows (if axis=0) or columns (if axis=1) that contain missing values. |
pandas.DataFrame.fillna(value, method, axis) |
Replace NaN values with the specified value along the given axis, and using the given method (‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None) |
pandas.DataFrame.interpolate(method, axis) |
Replace the NaN values with the estimated value calculated using the given method along the given axis. |
For any other requirement, refer to the complete list of function definitions for DataFrame and Series classes.